Advertisement

 

 

Impact of Natural Blind Spot Location on Perimetry.

Impact of Natural Blind Spot Location on Perimetry.
Author Information (click to view)

Wang M, Shen LQ, Boland MV, Wellik SR, De Moraes CG, Myers JS, Bex PJ, Elze T,


Wang M, Shen LQ, Boland MV, Wellik SR, De Moraes CG, Myers JS, Bex PJ, Elze T, (click to view)

Wang M, Shen LQ, Boland MV, Wellik SR, De Moraes CG, Myers JS, Bex PJ, Elze T,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

Scientific reports 2017 07 217(1) 6143 doi 10.1038/s41598-017-06580-7
Abstract

We study the spatial distribution of natural blind spot location (NBSL) and its impact on perimetry. Pattern deviation (PD) values of 11,449 reliable visual fields (VFs) that are defined as clinically unaffected based on summary indices were extracted from 11,449 glaucoma patients. We modeled NBSL distribution using a two-dimensional non-linear regression approach and correlated NBSL with spherical equivalent (SE). Additionally, we compared PD values of groups with longer and shorter distances than median, and larger and smaller angles than median between NBSL and fixation. Mean and standard deviation of horizontal and vertical NBSL were 14.33° ± 1.37° and -2.06° ± 1.27°, respectively. SE decreased with increasing NBSL (correlation: r = -0.14, p < 0.001). For NBSL distances longer than median distance (14.32°), average PD values decreased in the upper central (average difference for significant points (ADSP): -0.18 dB) and increased in the lower nasal VF region (ADSP: 0.14 dB). For angles in the direction of upper hemifield relative to the median angle (-8.13°), PD values decreased in lower nasal (ADSP: -0.11 dB) and increased in upper temporal VF areas (ADSP: 0.19 dB). In conclusion, we demonstrate that NBSL has a systematic effect on the spatial distribution of VF sensitivity.

Submit a Comment

Your email address will not be published. Required fields are marked *

thirteen − 8 =

[ HIDE/SHOW ]