Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p < 0.05) higher than the control after 21-day treatment and wound closure was ~99% without any adverse systemic reactions. Histological analysis qualitatively revealed an enhanced re-epithelialization and collagen deposition. Moreover, results also showed an improved rate of collagen synthesis and angiogenesis in the group treated with the hydrogel film loaded with Simvastatin. Thus, the present study demonstrated that developed film holds great potential for the acceleration of diabetic wound healing by its pro-angiogenic effect, faster re-epithelialization and increased collagen deposition.
Copyright © 2018. Published by Elsevier B.V.

References

PubMed