Advertisement

 

 

In vivo virulence of MHC-adapted AIDS virus serially-passaged through MHC-mismatched hosts.

In vivo virulence of MHC-adapted AIDS virus serially-passaged through MHC-mismatched hosts.
Author Information (click to view)

Seki S, Nomura T, Nishizawa M, Yamamoto H, Ishii H, Matsuoka S, Shiino T, Sato H, Mizuta K, Sakawaki H, Miura T, Naruse TK, Kimura A, Matano T,


Seki S, Nomura T, Nishizawa M, Yamamoto H, Ishii H, Matsuoka S, Shiino T, Sato H, Mizuta K, Sakawaki H, Miura T, Naruse TK, Kimura A, Matano T, (click to view)

Seki S, Nomura T, Nishizawa M, Yamamoto H, Ishii H, Matsuoka S, Shiino T, Sato H, Mizuta K, Sakawaki H, Miura T, Naruse TK, Kimura A, Matano T,

Advertisement

PLoS pathogens 2017 09 2013(9) e1006638 doi 10.1371/journal.ppat.1006638

Abstract

CD8+ T-cell responses exert strong suppressive pressure on HIV replication and select for viral escape mutations. Some of these major histocompatibility complex class I (MHC-I)-associated mutations result in reduction of in vitro viral replicative capacity. While these mutations can revert after viral transmission to MHC-I-disparate hosts, recent studies have suggested that these MHC-I-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Here, we directly show an increase in the in vivo virulence of an MHC-I-adapted virus serially-passaged through MHC-I-mismatched hosts in a macaque AIDS model despite a reduction in in vitro viral fitness. The first passage simian immunodeficiency virus (1pSIV) obtained 1 year after SIVmac239 infection in a macaque possessing a protective MHC-I haplotype 90-120-Ia was transmitted into 90-120-Ia- macaques, whose plasma 1 year post-infection was transmitted into other 90-120-Ia- macaques to obtain the third passage SIV (3pSIV). Most of the 90-120-Ia-associated mutations selected in 1pSIV did not revert even in 3pSIV. 3pSIV showed lower in vitro viral fitness but induced persistent viremia in 90-120-Ia- macaques. Remarkably, 3pSIV infection in 90-120-Ia+ macaques resulted in significantly higher viral loads and reduced survival compared to wild-type SIVmac239. These results indicate that MHC-I-adapted SIVs serially-transmitted through MHC-I-mismatched hosts can have higher virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that multiply-passaged HIVs could result in loss of HIV-specific CD8+ T cell responses in human populations and the in vivo pathogenic potential of these escaped viruses may be enhanced.

Submit a Comment

Your email address will not be published. Required fields are marked *

twenty − 1 =

[ HIDE/SHOW ]