Experimental evidence suggests that dopamine (DA) modulates refractive eye growth. We evaluated whether increasing endogenous DA activity using pharmacological or genetic approaches decreased myopia susceptibility in mice. First, we assessed the effects of systemic L-3,4-dihydroxyphenylalanine (L-DOPA) injections on form deprivation myopia (FDM) in C57BL/6 J (WT) mice. WT mice received daily systemic injections of L-DOPA (n = 11), L-DOPA + ascorbic acid (AA, n = 22), AA (n = 20), or Saline (n = 16). Second, we tested transgenic mice with increased or decreased expression of vesicular monoamine transporter 2 (VMAT2, n = 22; WT, n = 18; VMAT2, n = 18; or WT, n = 9), which packages DA into vesicles under normal and form deprivation conditions, affecting DA release. At post-natal day 28 (P28), monocular FD was induced in each genotype. Weekly measurements of refractive error, corneal curvature, and ocular biometry were performed until P42 or P49. WT mice exposed to FD developed a significant myopic shift (treated-contralateral eye) in AA (-3.27 ± 0.73D) or saline (-3.71 ± 0.80D) treated groups that was significantly attenuated by L-DOPA (-0.73 ± 0.90D, p = 0.0002) or L-DOPA + AA (-0.11 ± 0.46D, p = 0.0103). The VMAT2 mice, with under-expression of VMAT2, were most susceptible to FDM. VMAT2 mice developed significant myopic shifts to FD after one week compared to VMAT2 and WT mice (VMAT2: -5.48 ± 0.54D; VMAT2: -0.52 ± 0.92D, p < 0.05; WT: -2.13 ± 0.78D, p < 0.05; ungoggled control: -0.22 ± 0.24D, p < 0.001). These results indicate that endogenously increasing DA synthesis and release by genetic and pharmacological methods prevents FDM in mice.
Copyright © 2020. Published by Elsevier Ltd.