Advertisement

 

 

Induced gamma band activity from EEG as a possible index of training-related brain plasticity in motor tasks.

Induced gamma band activity from EEG as a possible index of training-related brain plasticity in motor tasks.
Author Information (click to view)

Amo C, De Santiago L, Zarza Luciáñez D, León Alonso-Cortés JM, Alonso-Alonso M, Barea R, Boquete L,


Amo C, De Santiago L, Zarza Luciáñez D, León Alonso-Cortés JM, Alonso-Alonso M, Barea R, Boquete L, (click to view)

Amo C, De Santiago L, Zarza Luciáñez D, León Alonso-Cortés JM, Alonso-Alonso M, Barea R, Boquete L,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

PloS one 2017 10 0512(10) e0186008 doi 10.1371/journal.pone.0186008
Abstract

The aim of this study was proposing gamma band activity (GBA) as an index of training-related brain plasticity in the motor cortex. Sixteen controls underwent an experimental session where electroencephalography (EEG) activity was recorded at baseline (resting) and during a motor task (hand movements). GBA was obtained from the EEG data at baseline and during the task. Index of plasticity (IP) was defined as the relationship between GBA at the end of the motor task (GBAM_FIN), divided by GBA at the beginning of the task (GBAM_INI) for movements of both hands. There was a significant increase in GBA at the end of the task, compared to the initial GBA for the motor task (GBAM_FIN > GBAM_INI). No differences were found at baseline (GBAB_FIN ≈ GBAB_INI). Individual IP values had a positive (r = 0.624) and significant correlation with subject’s handedness. Due to plastic changes, GBA could indirectly but objectively reveal changes in cerebral activity related to physical training. This method could be used as a future diagnostic test in the follow-up of patients undergoing rehabilitation. It could also have potential applications in the fields of sports medicine.

Submit a Comment

Your email address will not be published. Required fields are marked *

11 + 16 =

[ HIDE/SHOW ]