Targeting the deubiquitinases (DUBs) has become a promising avenue for anti-cancer drug development. However, the effect and mechanism of pan-DUB inhibitor, PR-619, on oesophageal squamous cell carcinoma (ESCC) cells remain to be investigated.
The effect of PR-619 on ESCC cell growth and cell cycle was evaluated by CCK-8 and PI staining. Annexin V-FITC/PI double staining was performed to detect apoptosis. LC3 immunofluorescence and acridine orange staining were applied to examine autophagy. Intercellular Ca concentration was monitored by Fluo-3AM fluorescence. The accumulation of ubi-proteins and the expression of the endoplasmic reticulum (ER) stress-related protein and CaMKKβ-AMPK signalling were determined by immunoblotting.
PR-619 could inhibit ESCC cell growth and induce G2/M cell cycle arrest by downregulating cyclin B1 and upregulating p21. Meanwhile, PR-619 led to the accumulation of ubiquitylated proteins, induced ER stress and triggered apoptosis by the ATF4-Noxa axis. Moreover, the ER stress increased cytoplasmic Ca and then stimulated autophagy through Ca -CaMKKβ-AMPK signalling pathway. Ubiquitin E1 inhibitor, PYR-41, could reduce the accumulation of ubi-proteins and alleviate ER stress, G2/M cell cycle arrest, apoptosis and autophagy in PR-619-treated ESCC cells. Furthermore, blocking autophagy by chloroquine or bafilomycin A1 enhanced the cell growth inhibition effect and apoptosis induced by PR-619.
Our findings reveal an unrecognized mechanism for the cytotoxic effects of general DUBs inhibitor (PR-619) and imply that targeting DUBs may be a potential anti-ESCC strategy.

© 2020 The Authors. Cell Proliferation Published by John Wiley & Sons Ltd.

References

PubMed