Atherosclerosis in diabetes is a leading cause of cardiovascular complications. Intermedin (IMD) is a calcitonin peptide that is known to inhibit macrophage phagocytosis in atherosclerosis, but the exact mechanism is unclear. We investigate genes that are differentially expressed in response to IMD in hyperglycemic conditions and determine whether they delay the progression of atherosclerosis. An atherosclerotic and diabetic-murine model was generated in 8-week-old male ApoE mice receiving streptozotocin and a high-fat diet. The mouse model was treated with IMD and the expression levels of NF-κB, Dnm3os, miR-27b-3p, and SLAMF7 were detected in plaque tissue and macrophages cultured with high glucose concentrations. Phagocytosis was determined by oxidized-low-density lipoprotein (Ox-LDL) uptake and the interactions among Dnm3os, SLAMF7 and miR-27b-3p were assessed by dual-luciferase reporter assays. The expression of NF-κB, Dnm3os, and SLAMF7 was enhanced in atherosclerotic plaques but decreased by IMD. The suppression of Dnm3os reduced plaque formation in IMD-treated mice even further whereas increased by miR-27b-3p. Dnm3os and SLAMF7 were competitively bind to miR-27b-3p in vivo. In vitro, ox-LDL uptake is elevated in macrophages cultured in hyperglycemic conditions but reduced by IMD. Dual-luciferase assays indicate that Dnm3os positively regulates SLAMF7 through miR-27b-3p expression. In conclusion, Dnm3os is involved in macrophage phagocytosis through the competitive binding of SLAMF7 with miR-27b-3p. IMD induces the suppression of Dnm3os to inhibit macrophage phagocytosis and alleviate atherosclerosis in diabetes.Copyright © 2021 Elsevier Inc. All rights reserved.
About The Expert
Yanling Su
Ping Guan
Dandan Li
Yanwen Hang
Xiaomiao Ye
Lu Han
Yi Lu
Xiaolu Bai
Peng Zhang
Wei Hu
References
PubMed