Advertisement

 

 

Kaposi’s Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N(6)-Adenosine Methylation To Promote Lytic Replication.

Kaposi’s Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N(6)-Adenosine Methylation To Promote Lytic Replication.
Author Information (click to view)

Ye F, Chen ER, Nilsen TW,


Ye F, Chen ER, Nilsen TW, (click to view)

Ye F, Chen ER, Nilsen TW,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

Journal of virology 2017 07 2791(16) pii 10.1128/JVI.00466-17

Abstract

N(6)-adenosine methylation (m(6)A) is the most common posttranscriptional RNA modification in mammalian cells. We found that most transcripts encoded by the Kaposi’s sarcoma-associated herpesvirus (KSHV) genome undergo m(6)A modification. The levels of m(6)A-modified mRNAs increased substantially upon stimulation for lytic replication. The blockage of m(6)A inhibited splicing of the pre-mRNA encoding the replication transcription activator (RTA), a key KSHV lytic switch protein, and halted viral lytic replication. We identified several m(6)A sites in RTA pre-mRNA crucial for splicing through interactions with YTH domain containing 1 (YTHDC1), an m(6)A nuclear reader protein, in conjunction with serine/arginine-rich splicing factor 3 (SRSF3) and SRSF10. Interestingly, RTA induced m(6)A and enhanced its own pre-mRNA splicing. Our results not only demonstrate an essential role of m(6)A in regulating RTA pre-mRNA splicing but also suggest that KSHV has evolved a mechanism to manipulate the host m(6)A machinery to its advantage in promoting lytic replication.IMPORTANCE KSHV productive lytic replication plays a pivotal role in the initiation and progression of Kaposi’s sarcoma tumors. Previous studies suggested that the KSHV switch from latency to lytic replication is primarily controlled at the chromatin level through histone and DNA modifications. The present work reports for the first time that KSHV genome-encoded mRNAs undergo m(6)A modification, which represents a new mechanism at the posttranscriptional level in the control of viral replication.

Submit a Comment

Your email address will not be published. Required fields are marked *

3 × five =

[ HIDE/SHOW ]