Glycans (oligosaccharide chains attached to glycoproteins) are a promising class of biomarkers, found in body fluids such as serum, saliva, urine, etc., that can be used for the diagnosis of disease conditions. Subtle changes in glycans resulting from altered glycosylation machinery have been reported during various diseases, including carcinogenesis. In this article, we detail protocols for the rapid, label-free analysis of glycans using a previously developed highly sensitive and selective electrochemical impedance spectroscopy-based biosensing diagnostic platform called “NanoMonitor.” The glycosensor operation is based on the specific affinity capture of the target glycans on the sensor surface by glycan-binding proteins known as lectins. This glycan-lectin binding activity modulates the impedance of the electrical double layer at the buffer-electrode interface. Protocols for the preparation of glycoprotein samples and glycosylation analysis using NanoMonitor and lectin-based ELISA are described here. The data obtained using these protocols show that NanoMonitor is capable of distinguishing between glycoform variants of the glycoprotein fetuin and glycoproteins derived from cultured human pancreatic cancer cells with high sensitivity (orders of magnitude higher than lectin-based ELISA) and selectivity. The results obtained indicate that NanoMonitor protocols can be further developed to enable use of NanoMonitor as a handheld electronic biosensor device for routine multiplexed detection of glycan biomarkers from clinical samples. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparing the NanoMonitor surface for glycan biosensing Support Protocol: Synthesis of glycoform variants of fetuin Basic Protocol 2: Performing Electrochemical Impedance Spectroscopy (EIS) for analyzing glycoprotein structures.
© 2021 Wiley Periodicals LLC.