During postnatal development, an emmetropization feedback mechanism uses visual cues to modulate the axial growth of eyes so that, with maturation, images of distant objects are in focus on the retina. If the visual cues indicate that the eye has become too long, it generates STOP signals that slow eye elongation. Myopia is a failure of this process where the eye becomes too long. The existing animal models of myopia have been essential in understanding the mechanics of emmetropization but use visual cues that lead to rapidly progressing myopia and don’t match the stimuli that lead to human myopia. Form deprivation removes esssentially all spatial contrast. Minus lens wear accurately guides axial elongation to restore sharp focus: technically it is not a model of myopia! In contrast, childhood myopia involves a slow drift into myopia, even with the presence of clear images. We hypothesize that, in the modern visual environment, STOP signals are present but often are not quite strong enough to prevent myopic progression. Using tree shrews, small diurnal mammals closely related to primates, we have developed an animal model that we propose better represents this situation. We used limited bandwidth light to provide limited chromatic cues for emmetropization that are not quite enough to produce fully effective STOP signaling, resulting in a slow drift into myopia as seen in children. We hypothesize that this animal model of myopia may prove useful in evaluating anti-myopia therapies where form deprivation and minus lens wear would be too powerful.Copyright © 2022 Elsevier Ltd. All rights reserved.