Endothelial cell pyroptosis is a novel cause of endothelial dysfunction in sepsis. Reticulocalbin-2 (RCN2) is involved in regulating vascular inflammation and plays an important role in the cardiovascular system. However, the role of RCN2 in inflammation-induced endothelial cell pyroptosis remains to be explored. Here, we found that RCN2 was upregulated after lipopolysaccharide (LPS) treatment in a concentration- and time-dependent manner. RCN2 knockdown resulted in a significant decrease in pyroptosis, reduced LDH and IL-1β release and ROS production and inhibited the expression of pyroptosis-related proteins (NLRP3, cleaved caspase-1, and cleaved GSDMD) (all p < 0.05). N-acetyl-L-cysteine (NAC) counteracted the effects of RCN2 on pyroptosis (all p < 0.01). The silencing of RCN2 antagonized the inhibitory effect of LPS on the phosphorylation of eNOS (p < 0.05). We predicted and confirmed that specificity protein-1(SP1) could directly bind to the RCN2 promoter and regulate RCN2. RCN2 overexpression rescued the inhibitory effect of SP1 inhibitor on HUVEC pyroptosis induced by LPS (all p < 0.05). These findings suggested that the activation of the SP1/RCN2/ROS signaling pathway could promote LPS-induced endothelial cell pyroptosis.
Copyright © 2021 The Author(s). Published by Elsevier GmbH.. All rights reserved.

Author