Ovarian cancer (OC) is the most lethal gynecologic malignance worldwide. Considering its metastasis nature, oncologists shift focus towards circulating tumor cells (CTCs), a progenitor that originates from primary tumor and undergoes morphologic/genetic alterations to enter bloodstream and invade nearby tissues. Mountains of evidence suggested that CTCs could provide deep insights into genomic, transcriptomic, and proteomic profiling of OC metastatic cascades. To pave the way for precision medicine, researchers exert great efforts to develop isolation/detection methodologies and construct CTCs-derived propagation platforms, including traditional cell cultures, patient-derived xenografts (PDXs), and organoids. From bench to bedside, CTCs provide minimally-invasive means to inform early diagnosis, predict prognosis, and guide treatment decisions. This review shined a spotlight on biology, detection technologies, and propagation platforms for CTCs. Of note, we also reviewed clinical applications of CTCs in liquid biopsy-based personalized cancer treatment and critically appraised limitations in routine clinical practice on the path to precision medicine.
Copyright © 2021. Published by Elsevier B.V.