Myocardial infarction (MI) is a critical acute ischemic heart disease, which can be early diagnosed by electrocardiogram (ECG). However, the most research of MI localization pay more attention on the specific changes in every ECG lead independent. In our study, the research envisages the development of a novel multi-lead MI localization approach based on the densely connected convolutional network (DenseNet).
Considering the correlation of the multi-lead ECG, the method using parallel 12-lead ECG, systematically exploited the correlation of the inter-lead signals. In addition, the dense connection of DenseNet enhanced the reuse of the feature information between the inter-lead and intra-lead signals. The proposed method automatically captured the effective pathological features, which improved the identification of MI.
The experimental results based on PTB diagnostic ECG database showed that the accuracy, sensitivity and specificity of the proposed method was 99.87%, 99.84% and 99.98% for 11 types of MI localization.
The proposed method has achieved superior results compared to other localization methods, which can be introduced into the clinical practice to assist the diagnosis of MI.

Copyright © 2021 Elsevier B.V. All rights reserved.

Author