Neuroblastoma (NB) is a childhood cancer that often occurs in the sympathetic nervous system. Previous reports showed that long non-coding RNAs (lncRNAs) could affect the progress of NB, but the mechanism is still indistinct. In this study, we unfolded the roles of LINC01296 in NB tissues and cells. The level of LINC01296, microRNA-584-5p (miR-584-5p), miR-34a-5p and mRNA of tripartite motif-containing 59 (TRIM59) were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) in NB tissues. The capacities of NB cells were validated by MTT assay, Edu assay, transwell assay and flow cytometry analysis. The interplay between miR-584-5p/miR-34a-5p and LINC01296 or TRIM59 were detected by dual-luciferase reporter assay. Finally, the in vivo experiment was implemented to verify the effect of LINC01296 in vivo. The level of LINC01296 and TRIM59 were increased, whereas miR-584-5p and miR-34a-5p levels were reduced in NB tissues in contrast to that in normal tissues. For functional analysis, LINC01296 deficiency inhibited the cell vitality, cell proliferation, migration and invasion in NB cells, whereas promoted cell apoptosis. Moreover, miR-584-5p and miR-34a-5p were validated to act as a tumor repressive effect in NB cells by restraining TRIM59. The results also showed that LINC01296 could regulate the development of NB. In mechanism, LINC01296 acted as a miR-584-5p and miR-34a-5p sponge to modulate TRIM59 expression. In addition, LINC01296 knockdown also attenuated tumor growth in vivo. LINC01296 promotes the progression of NB by increasing TRIM59 expression via regulating miR-584-5p and miR-34a-5p, which also offered an underlying targeted therapy for NB treatment.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Author