Osteoarthritis (OA) is a common disease in orthopedics. RNA N6-methyladenosine (m6A) exerts an essential effect in a variety of biological processes in the eukaryotes. In this study, we determined the effect of m6A regulators in the OA along with performing the subtype classification. Differential analysis of OA and normal samples in the database of Gene Expression Omnibus identified 9 significantly differentially expressed m6A regulators. These regulators were monitored by a random forest algorithm so as to evaluate the risk of developing OA disease. On the basis of these 9 moderators, a nomogram was established. The results of decision curve analysis suggested that the patients could benefit from a nomogram model. The OA sample was classified as 2 m6A models through a consensus clustering algorithm in accordance with these 9 regulators. These 2 m6A patterns were then assessed with principal component analysis. We also determined the m6A scores for the 2 m6A patterns and their correlation with immune infiltration. The results indicated that type A had a higher m6A score than type B. Thus, we suggest that the m6A pattern may provide a new approach for diagnose and provide novel ideas for molecular targeted therapy of OA.
© 2022. The Author(s).