The radiographic finding of pneumatosis intestinalis can indicate a spectrum of underlying processes ranging from a benign finding to a life-threatening condition. Although radiographic pneumatosis intestinalis is relatively common, there is no validated clinical tool to guide surgical management.
Using a retrospective cohort of 300 pneumatosis intestinalis cases from a single institution, we developed 3 machine learning models for 2 clinical tasks: (1) the distinction of benign from pathologic pneumatosis intestinalis cases and (2) the determination of patients who would benefit from an operation. The 3 models are (1) an imaging model based on radiomic features extracted from computed tomography scans, (2) a clinical model based on clinical variables, and (3) a combination model using both the imaging and clinical variables.
The combination model achieves an area under the curve of 0.91 (confidence interval: 0.87-0.94) for task I and an area under the curve of 0.84 (confidence interval: 0.79-0.88) for task II. The combination model significantly (P < .05) outperforms the imaging model and the clinical model for both tasks. The imaging model achieves an area under the curve of 0.72 (confidence interval: 0.57-0.87) for task I and 0.68 (confidence interval: 0.61-0.74) for task II. The clinical model achieves an area under the curve of 0.87 (confidence interval: 0.83-0.91) for task I and 0.76 (confidence interval: 0.70-0.81) for task II.
This study suggests that combined radiographic and clinical features can identify pathologic pneumatosis intestinalis and aid in patient selection for surgery. This tool may better inform the surgical decision-making process for patients with pneumatosis intestinalis.

Copyright © 2021 Elsevier Inc. All rights reserved.