Host adaptive mutations in the influenza A virus (IAV) PB2 protein are critical for human infection, but their molecular action is not well understood. We observe that when IAV containing avian PB2 infects mammalian cells, viral ribonucleoprotein (vRNP) aggregates that localize to the microtubule-organizing center (MTOC) are formed. These vRNP aggregates resemble LC3B-associated autophagosome structures, with aggresome-like properties, in that they cause the re-distribution of vimentin. However, electron microscopy reveals that these aggregates represent an accumulation of autophagic vacuoles. Compared to mammalian-PB2 virus, avian-PB2 virus induces higher autophagic flux in infected cells, indicating an increased rate of autophagosomes containing avian vRNPs fusing with lysosomes. We found that p62 is essential for the formation of vRNP aggregates and that the Raptor-interacting region of p62 is required for interaction with vRNPs through the PB2 polymerase subunit. Selective autophagic sequestration during late-stage virus replication is thus an additional strategy for host restriction of avian-PB2 IAV.Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
About The Expert
Siwen Liu
Bobo Wing-Yee Mok
Shaofeng Deng
Honglian Liu
Pui Wang
Wenjun Song
Pin Chen
Xiaofeng Huang
Min Zheng
Siu-Ying Lau
Conor J Cremin
Chun-Yee Tam
Baiying Li
Liwen Jiang
Yixin Chen
Kwok-Yung Yuen
Honglin Chen
References
PubMed