Advertisement

 

 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of 36 blood group alleles among 396 Thai samples reveals region-specific variants.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of 36 blood group alleles among 396 Thai samples reveals region-specific variants.
Author Information (click to view)

Jongruamklang P, Gassner C, Meyer S, Kummasook A, Darlison M, Boonlum C, Chanta S, Frey BM, Olsson ML, Storry JR,


Jongruamklang P, Gassner C, Meyer S, Kummasook A, Darlison M, Boonlum C, Chanta S, Frey BM, Olsson ML, Storry JR, (click to view)

Jongruamklang P, Gassner C, Meyer S, Kummasook A, Darlison M, Boonlum C, Chanta S, Frey BM, Olsson ML, Storry JR,

Advertisement

Transfusion 2018 04 15() doi 10.1111/trf.14624
Abstract
BACKGROUND
Blood group phenotype variation has been attributed to potential resistance to pathogen invasion. Variation was mapped in blood donors from Lampang (northern region) and Saraburi (central region), Thailand, where malaria is endemic. The previously unknown blood group allele profiles were characterized and the data were correlated with phenotypes. The high incidence of the Vel-negative phenotype previously reported in Thais was investigated.

STUDY DESIGN AND METHODS
DNA from 396 blood donors was analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Outliers were investigated by serology and DNA sequencing. Allele discrimination assays for SMIM1 rs1175550A/G and ACKR1 rs118062001C/T were performed and correlated with antigen expression.

RESULTS
All samples were phenotyped for Rh, MNS, and K. Genotyping/phenotyping for RhD, K, and S/s showed 100% concordance. Investigation of three RHCE outliers revealed an e-variant antigen encoded by RHCE*02.22. Screening for rs147357308 (RHCE c.667T) revealed a frequency of 3.3%. MN typing discrepancies in 41 samples revealed glycophorin variants, of which 40 of 41 were due to Mi . Nine samples (2.3%) were heterozygous for FY*01W.01 (c.265C > T), and six samples (1.5%) were heterozygous for JK*02N.01. All samples were wildtype SMIM1 homozygotes with 97% homozygosity for rs1175550A.

CONCLUSIONS
Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry is an efficient method for rapid routine genotyping and investigation of outliers identified novel variation among our samples. The expected high prevalence of the Mi(a+) phenotype was observed from both regions. Of potential clinical relevance in a region where transfusion-dependent thalassemia is common, we identified two RHCE*02 alleles known to encode an e-variant antigen.

Submit a Comment

Your email address will not be published. Required fields are marked *

eleven + 19 =

[ HIDE/SHOW ]