Eimeria tenella is an obligate intracellular parasite that actively invades cecal epithelial cells of chickens. This parasite encodes a genome of more than 8000 genes. However, more than 70% of the gene models for this species are currently annotated as hypothetical proteins. In this study, a conserved hypothetical protein gene of E. tenella, designated EtCHP18905, was cloned and identified, and its immune protective effects were evaluated. The open reading frame of EtCHP18905 was 1053bp and encoded a protein of 350 amino acids with a molecular weight of 38.7kDa. The recombinant EtCHP18905 protein (rEtCHP18905) was expressed in E. coli. Using western blot, the recombinant protein was successfully recognized by anti GST-Tag monoclonal antibody and anti-sporozoites protein rabbit serum. Real-time quantitative PCR analysis revealed that the EtCHP18905 mRNA levels were higher in sporozoites than in unsporulated oocysts, sporulated oocysts and second-generation merozoites. Western blot analysis showed that EtCHP18905 protein expression levels were lower in sporozoites than in other stages. Immunofluorescence analysis indicated that the EtCHP18905 protein was located on the surface of sporozoites and second-generation merozoites. Inhibition experiments showed that the ability of sporozoites to invade host cells was significantly decreased after treatment with the anti-rEtCHP18905 polyclonal antibody. Vaccination with rEtCHP18905 protein was able to significantly decrease mean lesion scores and oocyst outputs as compared to non-vaccinated controls. The results suggest that the rEtCHP18905 protein can induce partial immune protection against infection with E. tenella and could be an effective candidate for the development of new vaccines.
© H. Zhao et al., published by EDP Sciences, 2021.

Author