Advertisement

 

 

N-Acetylated Proline-Glycine-Proline Accelerates Cutaneous Wound Healing and Neovascularization by Human Endothelial Progenitor Cells.

N-Acetylated Proline-Glycine-Proline Accelerates Cutaneous Wound Healing and Neovascularization by Human Endothelial Progenitor Cells.
Author Information (click to view)

Kwon YW, Heo SC, Lee TW, Park GT, Yoon JW, Jang IH, Kim SC, Ko HC, Ryu Y, Kang H, Ha CM, Lee SC, Kim JH,


Kwon YW, Heo SC, Lee TW, Park GT, Yoon JW, Jang IH, Kim SC, Ko HC, Ryu Y, Kang H, Ha CM, Lee SC, Kim JH, (click to view)

Kwon YW, Heo SC, Lee TW, Park GT, Yoon JW, Jang IH, Kim SC, Ko HC, Ryu Y, Kang H, Ha CM, Lee SC, Kim JH,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

Scientific reports 2017 02 237() 43057 doi 10.1038/srep43057
Abstract

Human endothelial progenitor cells (hEPCs) are promising therapeutic resources for wound repair through stimulating neovascularization. However, the hEPCs-based cell therapy has been hampered by poor engraftment of transplanted cells. In this study, we explored the effects of N-acetylated Proline-Glycine-Proline (Ac-PGP), a degradation product of collagen, on hEPC-mediated cutaneous wound healing and neovascularization. Treatment of hEPCs with Ac-PGP increased migration, proliferation, and tube-forming activity of hEPCs in vitro. Knockdown of CXCR2 expression in hEPCs abrogated the stimulatory effects of Ac-PGP on migration and tube formation. In a cutaneous wound healing model of rats and mice, topical application of Ac-PGP accelerated cutaneous wound healing with promotion of neovascularization. The positive effects of Ac-PGP on wound healing and neovascularization were blocked in CXCR2 knockout mice. In nude mice, the individual application of Ac-PGP treatment or hEPC injection accelerated wound healing by increasing neovascularization. Moreover, the combination of Ac-PGP treatment and hEPC injection further stimulated wound healing and neovascularization. Topical administration of Ac-PGP onto wound bed stimulated migration and engraftment of transplanted hEPCs into cutaneous dermal wounds. Therefore, these results suggest novel applications of Ac-PGP in promoting wound healing and augmenting the therapeutic efficacy of hEPCs.

Submit a Comment

Your email address will not be published. Required fields are marked *

9 + 17 =

[ HIDE/SHOW ]