Nerve growth factor (NGF) is a neurotrophic factor that is thought to have a broad role in the nervous system and tumors, and has recently been described as a mediator of inflammation. It is not clear whether or not NGF participates in apoptosis of articular chondrocytes. In this study, we determined if NGF affects ASIC1a expression and NF-κB P65 activation in rat chondrocytes, and measured the effectiveness of NGF on apoptotic protein expression in acid-induced chondrocytes. NGF was shown to up-regulate the level of ASIC1a in a dose- and time-dependent fashion. Simultaneously, NGF activated NF-κB P65 in chondrocytes. Additionally, the elevated ASIC1a expression induced by NGF was eliminated by the NF-κB inhibitor (PDTC) in chondrocytes. Moreover, NGF reduced cell viability and induced LDH release under the premise of acid-induced articular chondrocytes. Furthermore, NGF could enhance cleaved-caspase 9 and cleaved-PARP expression in acid-pretreated chondrocytes, and which could be inhibited by using psalmotoxin 1(PcTX1) or PDTC. Together, these results indicated that NGF may up-regulate ASIC1a expression through the NF-κB signaling pathway, and further promote acid-induced apoptosis of chondrocytes.
Copyright © 2020 Elsevier B.V. All rights reserved.