Networks science techniques are frequently used to provide meaningful insights into the populations underlying medical and social data. This paper examines SATHCAP, a dataset related to HIV and drug use in three US cities. In particular, we use network measures such as betweenness centrality, closeness centrality, and eigenvector centrality to find central, important nodes in a network derived from SATHCAP data. We evaluate the attributes of these important nodes and create an exceptionality score based on the number of nodes that share a particular attribute. This score, along with the underlying network itself, is used to reveal insight into the attributes of groups that can be effectively targeted to slow the spread of disease. Our research confirms a known connection between homelessness and HIV, as well as drug abuse and HIV, and shows support for the theory that individuals without easy access to transportation are more likely to be central to the spread of HIV in urban, high risk populations.