The efficacy of cell-based therapies relies on targeted payload delivery and enhanced cell retention. In vitro and in vivo studies suggest that the glycoengineering of mesenchymal and cardiosphere-derived cells (CDCs) may enhance such recruitment at sites of injury. We evaluated the role of blood cells in amplifying this recruitment. Thus, the human α(1,3)fucosyltransferase FUT7 was stably expressed in CDCs, sometimes with P-selectin glycoprotein ligand-1 (PSGL-1/CD162). Such FUT7 over-expression resulted in cell-surface sialyl Lewis-X (sLe) expression, at levels comparable to blood neutrophils. Whereas FUT7 was sufficient for CDC recruitment on substrates bearing E-selectin under flow, PSGL-1 co-expression was necessary for P-/L-selectin binding. In both cone-plate viscometer and flow chamber studies, chemokine driven neutrophil activation promoted the adhesion of glycoengineered-CDCs to blood cells. Here, blood neutrophils activated upon contact with IL-1β stimulated endothelial cells, amplified glycoengineered-CDC recruitment. In vivo, local inflammation in a mouse ear elicited both glycoengineered-CDC and peripheral blood neutrophil homing to the inflamed site. Glycoengineering CDCs also resulted in enhanced (~16%) cell retention at 24 h in a murine myocardial infarction model, with CDCs often co-localized with blood neutrophils. Overall, peripheral blood neutrophils, activated at sites of injury, may enhance recruitment of glycoengineered cellular therapeutics via secondary capture mechanisms.
Copyright © 2021. Published by Elsevier Ltd.

Author