Stress is a state of feeling that inhibits one from responding properly in the face of a threat. Agarwood smoke has been used in traditional medicine as a sedative anti-anxious, and anti-restless therapy. Its scent emitted from heat induces people to enter a stable state; however, the underlying molecular effect is still unclear.
This study analyzed novel biological events and gene expression signatures induced by agarwood incense smoke in mice.
Incense smoke was produced by heating at 150 ºC for 30 min in a headspace autosampler oven. We treated mice with exposure to incense smoke from Kynam agarwood for 45 min/day for 7 consecutive days. After a 7-day inhalation period, the potent agarwood smoke affected-indicators in serum were measured, and the RNA profiles of the mouse brains were analyzed by microarray to elucidate the biological events induced by agarwood incense smoke.
Chemical profile analysis showed that the major component in the incense smoke of Kynam was 2-(2-phenylethyl) chromone (26.82%). Incense smoke from Kynam induced mice to enter a stable state and increased the levels of serotonin in sera. The emotion-related pathways, including dopaminergic synapse, serotonergic synapse, GABAergic synapse, long-term depression and neuroactive ligand-receptor interaction, were significantly affected by incense smoke. Moreover, the expression of Crhr2 and Chrnd genes, involved with neuroactive ligand-receptor interaction pathway, was upregulated by incense smoke.
By a newly-established incense smoke exposure system, we first identified that anti-anxious and anti-depressant effects of agarwood incense smoke were likely associated with the increase of serotonin levels and multiple neuroactive pathways in mice.

Copyright © 2021 Elsevier B.V. All rights reserved.