Mesenchymal stem cell-derived exosomes (MSC-exos), with its inherent capacity to modulate cellular behavior, are emerging as a novel cell-free therapy for bone regeneration. Herein, focusing on practical applying problems, the osteoinductivity of MSC-exos produced by different stem cell sources (rBMSCs/rASCs) and culture conditions (osteoinductive/common) were systematically compared to screen out an optimized osteogenic exosome (BMSC-OI-exo). Via bioinformatic analyses by miRNA microarray and in vitro pathway verification by gene silencing and miRNA transfection, we first revealed that the osteoinductivity of BMSC-OI-exo was attributed to multi-component exosomal miRNAs (let-7a-5p, let-7c-5p, miR-328a-5p and miR-31a-5p). These miRNAs targeted Acvr2b/Acvr1 and regulated the competitive balance of Bmpr2/Acvr2b toward Bmpr-elicited Smad1/5/9 phosphorylation. On these bases, lyophilized delivery of BMSC-OI-exo on hierarchical mesoporous bioactive glass (MBG) scaffold was developed to realize bioactivity maintenance and sustained release by entrapment in the surface microporosity of the scaffold. In a rat cranial defect model, the loading of BMSC-OI-exo efficiently enhanced the bone forming capacity of the scaffold and induced rapid initiation of bone regeneration. This paper could provide empirical bases of MSC-exo-based therapy for bone regeneration and theoretical bases of MSC-exo-induced osteogenesis mechanism. The BMSC-OI-exo-loaded MBG scaffold developed here represented a promising bone repairing strategy for future clinical application.
Copyright © 2021 Elsevier Ltd. All rights reserved.

References

PubMed