Dispersal drives invasion dynamics of non-native species and pathogens. Applying knowledge of dispersal to optimize management of invasions can mean the difference between a failed or successful control program and dramatically improve return on investment of control efforts. A common approach for identifying optimal management solutions for invasions is to optimize dynamic spatial models that incorporate dispersal. Optimizing these spatial models can be very challenging because the interaction of time, space, and uncertainty rapidly amplifies the number of dimensions being considered. Addressing such problems requires advances in, and the integration of, techniques from multiple fields including ecology, decision analysis, bioeconomics, natural resource management, and optimization. By synthesizing recent advances from these diverse fields, we provide a workflow for applying ecological theory to advance optimal management science and highlight priorities for optimizing the control of invasions. One of the striking gaps we identify is the extremely limited consideration of dispersal uncertainty in optimal management frameworks, even though dispersal estimates are highly uncertain and greatly influence invasion outcomes. In addition, optimization frameworks rarely consider multiple types of uncertainty (we describe five major types) and their interrelationships. Thus, feedbacks from management or other sources that could magnify uncertainty in dispersal are rarely considered. Incorporating uncertainty is crucial for improving transparency in decision risks and identifying optimal management strategies. We discuss gaps and solutions to the challenges of optimization using dynamic spatial models to increase the practical application of these important tools and improve the consistency and robustness of management recommendations for invasions.
This article is protected by copyright. All rights reserved.