Replicative senescence causes a reduced osteogenic differentiation potential of senescent dental follicle cells (DFCs). The transcription factor p53 is often involved in the induction of cellular senescence, but little is known about its role in DFCs. This study examined for the first time the role of p53 compared to its pro-proliferative antagonist E2F-1 in terms of osteogenic differentiation potential and induction of senescence. Protein expression of E2F-1 decreased during cell aging, while p53 was expressed constitutively. Gene silencing of E2F1 (E2F-1) inhibited the proliferation rate of DFCs and increased the induction of cellular senescence. The induction of cellular senescence is regulated independently of the gene expression of TP53 (p53), since its gene expression depends on the expression of E2F1. Moreover, gene silencing of TP53 induced E2F1 gene expression and increased cell proliferation, but did not affect the rate of induction of cellular senescence. TP53 knockdown further induced the alkaline phosphatase and mineralization in DFCs. However, the simultaneous silencing of TP53 and E2F1 did not inhibit the inductive effect of TP53 knockdown on osteogenic differentiation, indicating that this effect is independent of E2F-1. In summary, our results suggest that p53 inhibits osteogenic differentiation and cell proliferation in senescent DFCs, but is not significantly involved in senescence induction.
Copyright © 2020 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.