Cognitive inhibition, which denotes the ability to suppress predominant or automatic responses, has been associated with lower pain sensitivity and larger conditioned pain modulation in humans. Studies exploring the association between cognitive inhibition and other pain inhibitory phenomena, like exercise-induced hypoalgesia (EIH), are scarce. The primary aim was to explore the association between cognitive inhibition and EIH at exercising (local) and non-exercising (remote) muscles after isometric exercise. The secondary aim was to explore the association between cognitive inhibition and pressure pain sensitivity.
Sixty-six pain-free participants (28.3 ± 8.9 years old, 34 women) completed two cognitive inhibition tasks (stop-signal task and Stroop Colour-Word task), a 3-min isometric wall squat exercise, and a quiet rest control condition with pre- and post-assessments of manual pressure pain thresholds at a local (thigh) and a remote site (shoulder). In addition, cuff pressure pain thresholds, pain tolerance and temporal summation of pain were assessed at baseline.
No association was found between remote EIH and cognitive inhibition (Stroop interference score: r=0.12, [-0.15; 0.37], p=0.405, BF01=6.70; stop-signal reaction time: r=-0.08, [-0.32; 0.17], p=0.524, BF01=8.32). Unexpectedly, individuals with worse performance on the Stroop task, as indicated by a higher Stroop interference score, showed higher local EIH (r=0.33; [0.10; 0.53], p=0.007, BF01=0.29). No associations were observed between pain sensitivity and any of the cognitive inhibition performance parameters.
The present findings do not support previous evidence on positive associations between exercise-induced hypoalgesia and cognitive inhibition, as well as baseline pain sensitivity and cognitive inhibition.

© 2021 Walter de Gruyter GmbH, Berlin/Boston.

Author