Power/sample size calculations for assessing correlates of risk in clinical efficacy trials.

Author Information (click to view)

Gilbert PB, Janes HE, Huang Y,

Gilbert PB, Janes HE, Huang Y, (click to view)

Gilbert PB, Janes HE, Huang Y,

Share on FacebookTweet about this on TwitterShare on LinkedIn

Statistics in medicine 2016 3 31() doi 10.1002/sim.6952


In a randomized controlled clinical trial that assesses treatment efficacy, a common objective is to assess the association of a measured biomarker response endpoint with the primary study endpoint in the active treatment group, using a case-cohort, case-control, or two-phase sampling design. Methods for power and sample size calculations for such biomarker association analyses typically do not account for the level of treatment efficacy, precluding interpretation of the biomarker association results in terms of biomarker effect modification of treatment efficacy, with detriment that the power calculations may tacitly and inadvertently assume that the treatment harms some study participants. We develop power and sample size methods accounting for this issue, and the methods also account for inter-individual variability of the biomarker that is not biologically relevant (e.g., due to technical measurement error). We focus on a binary study endpoint and on a biomarker subject to measurement error that is normally distributed or categorical with two or three levels. We illustrate the methods with preventive HIV vaccine efficacy trials and include an R package implementing the methods. Copyright © 2016 John Wiley & Sons, Ltd.

Submit a Comment

Your email address will not be published. Required fields are marked *

17 − 13 =