Advertisement

 

 

Prenylation of viral proteins by enzymes of the host: Virus-driven rationale for therapy with statins and FT/GGT1 inhibitors.

Prenylation of viral proteins by enzymes of the host: Virus-driven rationale for therapy with statins and FT/GGT1 inhibitors.
Author Information (click to view)

Marakasova ES, Eisenhaber B, Maurer-Stroh S, Eisenhaber F, Baranova A,


Marakasova ES, Eisenhaber B, Maurer-Stroh S, Eisenhaber F, Baranova A, (click to view)

Marakasova ES, Eisenhaber B, Maurer-Stroh S, Eisenhaber F, Baranova A,

Advertisement

BioEssays : news and reviews in molecular, cellular and developmental biology 2017 09 08() doi 10.1002/bies.201700014

Abstract

Intracellular bacteria were recently shown to employ eukaryotic prenylation system for modifying activity and ensuring proper intracellular localization of their own proteins. Following the same logic, the proteins of viruses may also serve as prenylation substrates. Using extensively validated high-confidence prenylation predictions by PrePS with a cut-off for experimentally confirmed farnesylation of hepatitis delta virus antigen, we compiled in silico evidence for several new prenylation candidates, including IRL9 (CMV) and few other proteins encoded by Herpesviridae, Nef (HIV-1), E1A (human adenovirus 1), NS5A (HCV), PB2 (influenza), HN (human parainfluenza virus 3), L83L (African swine fever), MC155R (molluscum contagiosum virus), other Poxviridae proteins, and some bacteriophages of human associated bacteria. If confirmed experimentally, these findings may aid in dissection of molecular functions of uncharacterized viral proteins and provide a novel rationale for statin and FT/GGT1-based inhibition of viral infections. Prenylation of bacteriophage proteins may aid in moderation of microbial infections.

Submit a Comment

Your email address will not be published. Required fields are marked *

ten − 2 =

[ HIDE/SHOW ]