Targeting gut microbiota with probiotics has emerged as a promising nutritional approach for the prevention of obesity and metabolic syndrome. Cultured dairy products can be effectively employed for the delivery of probiotics to the gut as well as for the support of growth and survival of probiotic bacteria. The purpose of this study was to characterize the effects of probiotic-enriched pasteurized milk and dairy products (Greek-style yogurt and cottage cheese) of different origins (cow, goat, and camel) on taxonomic composition of the mouse gut microbiota. We hypothesized that cultured dairy products can be an effective vector for the delivery of probiotics to the gut because of its nutritional value, acidic nature, and long shelf-life. Mice were fed a standard low fat, plant polysaccharide-rich (LF/PP) diet supplemented with the probiotic-enriched milk and dairy products for 5 weeks. Next generation sequencing of DNA from mouse fecal samples was used to characterize the bacterial relative abundance. Mice fed a diet supplemented with camel milk demonstrated characteristic changes in the gut microbiota, which included an increase in relative abundance of order Clostridiales and genus Anaerostipes. Mice fed a diet supplemented with the probiotic-enriched cow cheese exhibited an increase in the relative abundance of order Clostridiales, family Ruminococcaceae, and family Lachnospiraceae. The results obtained and their bioinformatics analysis support the conclusion that camel milk and the probiotic cow cheese induce changes in the mouse gut microbiota, which can be characterized as potentially beneficial to health compared to the changes associated with a standard diet. These findings imply that probiotic-enriched milk and dairy products can be highly effective for the delivery and support of probiotic bacteria of the gut.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

References

PubMed