Canine diabetes mellitus is a significant health burden, followed with numerous systemic complications, including diabetic cataracts and retinopathy, leading to blindness. Diabetes should be considered as a disease damaging all the body organs, including gastrointestinal tract, through a complex combination of vascular and metabolic pathologies, leading to impaired gut function. Tear film can be obtained in a non-invasive way, which makes it a feasible biomarker source. In this study we compared proteomic changes ongoing in tear film of diabetic dogs. The study group consisted of 15 diabetic dogs, and 13 dogs served as a control group. After obtaining tear film with Schirmer strips, we performed 2-dimensional electrophoresis, followed by Delta2D software analysis, which allowed to select statistically significant differentially expressed proteins. After their identification with MALDI-TOF (matrix assisted laser desorption and ionisation time of flight) spectrometry we found one up-regulated protein in tear film of diabetic dogs-SRC kinase signaling inhibitor 1 (SRCIN1). Eight proteins were down-regulated: phosphatidylinositol-4 kinase type 2 alpha (PI4KIIα), Pro-melanin concentrating hormone (Pro-MCH), Flotillin-1, Protein mono-ADP ribosyltransferase, GRIP and coiled coil domain containing protein 2, tetratricopeptide repeat protein 36, serpin, and Prelamin A/C. Identified proteins were analyzed by Panther Gene Ontology software, and their possible connections with diabetic etiopathology were discussed. We believe that this is the first study to target tear film proteome in canine diabetes. We believe that combined with traditional examination, the tear film proteomic analysis can be a new source of biomarkers both for clinical practice, and experimental research.

References

PubMed