The spread of Aedes aegypti in California and other regions of the U.S. has increased the need to understand the potential for local chains of Ae. aegypti-borne virus transmission, particularly in arid regions of the state where the ecology of these mosquitoes is less understood. For public health and vector control programs, it is helpful to know whether variation in risk of local transmission can be attributed to socio-demographic factors that could help to target surveillance and control programs. Socio-demographic factors have been shown to influence transmission risk of dengue virus outside the U.S. by modifying biting rates and vector abundance. In regions of the U.S. where Ae. aegypti have recently invaded and where residential areas are structured differently than those in the tropics where Ae. aegypti are endemic, it is unclear how socio-demographic factors modify the abundance of Ae. aegypti populations. Understanding heterogeneities among households in Ae. aegypti abundance will provide a better understanding of local vectorial capacity and is an important component of understanding risk of local Ae. aegypti-borne virus transmission. We conducted a cross-sectional study in Los Angeles County, California during summer 2017 to understand the causes of variation in relative abundance of Ae. aegypti among households. We surveyed 161 houses, representing a wide range of incomes. Surveys consisted of systematic adult mosquito collections, inspections of households and properties, and administration of a questionnaire in English or Spanish. Adult Ae. aegypti were detected at 72% of households overall and were found indoors at 12% of households. An average of 3.1 Ae. aegypti were collected per household. Ae. aegypti abundance outdoors was higher in lower-income neighborhoods and around older households with larger outdoor areas, greater densities of containers with standing water, less frequent yard maintenance, and greater air-conditioner use. We also found that Aedes aegypti abundance indoors was higher in households that had less window and door screening, less air-conditioner usage, more potted plants indoors, more rain-exposed containers around the home, and lower neighborhood human population densities. Our results indicate that, in the areas of southern California studied, there are behavioral and socio-demographic determinants of Ae. aegypti abundance, and that low-income households could be at higher risk for exposure to Ae. aegypti biting and potentially greater risk for Zika, dengue, and chikungunya virus transmission if a local outbreak were to occur.