The loss of insulin-like growth factor-1 (IGF-1) expression in senescent dermal fibroblasts during aging is associated with an increased risk of non-melanoma skin cancer (NMSC). We tested how IGF-1 signaling can influence photocarcinogenesis during chronic UVB exposure to determine if fractionated laser resurfacing (FLR) of aged skin which upregulates dermal IGF-1 levels can prevent the occurrence of actinic keratosis (AK) and NMSC.
A human skin/immunodeficient mouse xenografting model was used to test the effects of a small molecule inhibitor of the IGF-1 receptor on chronic UVB radiation. Subsequently, the durability of FLR treatment was tested on a cohort of human subjects aged ≥65. Finally, 48 subjects aged 60 and older with considerable actinic damage were enrolled in a prospective randomized clinical trial in which they underwent a single unilateral FLR treatment of one lower arm. Numbers of AKs/NMSCs were recorded on both extremities for up to 36 months in blinded fashion.
Xenografting studies revealed chronic UVB treatment with a topical IGF-1R inhibitor resulted in a pro-carcinogenic response. A single FLR treatment was durable in restoring appropriate UVB response in geriatric skin for at least two years. FLR resulted in sustained reduction in numbers of AKs and decreased numbers of NMSC in the treated (24) versus untreated (2) arms.
The elimination of senescent fibroblasts via FLR reduced the pro-carcinogenic UVB response of aged skin. Thus, wounding therapies are potentially effective prophylaxis for managing high-risk populations. NCT03906253.
National Institutes of Health, Veterans Administration.