Benzodiazepines (BZDs) represent a diverse class of bicyclic heterocyclic molecules. In the last few years, benzodiazepines have emerged as potential therapeutic agents. As a result, several mild, efficient and high yielding protocols have been developed that offer access to various functionalized benzodiazepines (BZDs). They are known to possess a wide array of biological activities such as anxiolytic, anticancer, anticonvulsant, antipsychotics, muscle relaxant, anti-tuberculosis, and antimicrobial activities. The fascinating spectrum of biological activities exhibited by BZDs in various fields has prompted the medicinal chemist to design and discover novel benzodiazepine-based analogs as potential therapeutic candidates with the desired biological profile. In this review, an attempt has been made by to summarize (1) Recent advances in the synthetic chemistry of benzodiazepines which enable their synthesis with desired substitution pattern; (2) Medicinal chemistry of BZDs as therapeutic candidates with promising biological profile including insight of mechanistic studies; (3) The correlation of biological data with the structure i.e. structure-activity relationship studies were also included to provide an insight into the rational design of more active agents.
Copyright © 2020 Elsevier Inc. All rights reserved.

Author