This case report describes the reconstruction of the traumatic distal fibular and lateral malleolus defects with a novel method of using individualized 3D printed titanium prosthesis for the first time.
A 63-year-old male farmer was hospitalized in emergency because of open injury and distal fibular and lateral malleolus defects in the left leg caused by a car accident. 3 months after debridement and latissimus dorsi muscle flap transplantation and skin graft operation, the patient re-hospitalized because of distal fibular and lateral malleolus defect and local pain. We examined the bilateral ankle joint with three-dimensional CT, obtained data about the missing left distal fibular and lateral malleolus through the mirror principle. The corresponding titanium alloy prosthesis then was designed and printed using a 3D metal printer. The patient had no obvious contraindication for surgery, so the prosthesis was surgically implanted. The patient was followed up for 2 years. There was no discomfort at the surgical site. The function of the operated ankle was satisfied by the patient, the AOFAS (American Orthopaedic Foot & Ankle Society) score was 85 (Kitaoka et al., 1994 [1]).
Individualized 3D printed titanium alloy prosthesis consistent with the anatomical structure of lost distal fibula and lateral malleolus. The proximal end of the prosthesis was designed with four nail holes to install screws to fix the fibula together with it. The lower tibiofibular and talofibular joint surfaces of the prosthesis were designed smoothly. In order to improve the stability of the lower tibiofibular joint, anchors were placed at the attachment of the anterior and posterior tibiofibular ligaments to reconstruct these ligaments.
The structure and function of the reconstructed distal fibular and the lateral malleous were close to normal. Individualized 3D printed prosthesis might have considerable advantages over traditional treatment methods. The individualized 3D printed titanium alloy prosthesis provides a new method for the repair and reconstruction of similar bone defects. The use of 3D printed prosthesis for surgical repair needs to be further examined in the future through long-term follow-up studies and in more cases.

Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.

Author