Pre-dive altitude exposure may increase respiratory fatigue and subsequently augment exercise ventilation at depth. This study examined pre-dive altitude exposure and the efficacy of resistance respiratory muscle training (RMT) on respiratory fatigue while diving at altitude.
Ten men (26±5 years; VO2peak: 39.8±3.3 mL• kg-1•min-1) performed three dives; one control (ground level) and two simulated altitude dives (3,658 m) to 17 msw, relative to ground level, before and after four weeks of resistance RMT. Subjects performed pulmonary function testing (e.g., inspiratory [PI] and expiratory [PE] pressure testing) pre- and post-RMT and during dive visits. During each dive, subjects exercised for 18 minutes at 55% VO2peak, and ventilation (VE), breathing frequency (ƒb,), tidal volume (VT) and rating of perceived exertion (RPE) were measured.
Pre-dive altitude exposure reduced PI before diving (p=0.03), but had no effect on exercise VE, ƒb, or VT at depth. At the end of the dive in the pre-RMT condition, RPE was lower (p=0.01) compared to control. RMT increased PI and PE (p<0.01). PE was reduced from baseline after diving at altitude (p<0.03) and this was abated after RMT. RMT did not improve VE or VT at depth, but decreased ƒb (p=0.01) and RPE (p=0.048) during the final minutes of exercise.
Acute altitude exposure pre- and post-dive induces decrements in PI and PE before and after diving, but does not seem to influence ventilation at depth. RMT reduced ƒb and RPE during exercise at depth, and may be useful to reduce work of breathing and respiratory fatigue during dives at altitude.

Copyright© Undersea and Hyperbaric Medical Society.

Author