Respiratory syncytial virus (RSV) infection in early life is associated strongly with the subsequent development and exacerbation of asthma, however, the mechanism is still ambiguous. In this study, we identified that RSV nonstructural protein (NS) 1 plays a critical role. Plasmid-mediated overexpression of NS1 induced significant airway hyperresponsiveness, eosinophilia, and mucus hyperproduction in mice. In the pNS1 group, there were markedly elevated proportions of Th2 and Th17 cells, while Th1 and Foxp3+ regulatory T cells (Tregs) significantly declined compared with the control group. Serum concentrations of interleukin (IL)-4, IL-5, IL-6, IL-17, transforming growth factor-beta, and tumor necrosis factor-alpha increased but levels of interferon-gamma and interleukin-10 declined in pNS1 group. Besides, NS1 caused a significant rise of serum thymic stromal lymphopoietin (TSLP) and OX40L levels, and a neutralizing mAb anti-OX40L was capable of promoting RSV clearance and attenuating the airway allergic inflammation caused by pNS1. Otherwise, OX40L-blocking counteracts the inhibitory effect of pNS1 on Tregs in the spleen. RSV NS1 caused elevated levels of phospho-AKT, phospho-mTOR, and phospho-S6K1, which were partially attenuated by anti-OX40L. Moreover, a specific inhibitor of mTORC1 significantly relieved the inhibition of Foxp3 expression and Tregs differentiation. Together, the data indicate that RSV NS1 protein breaks immune tolerance and induces airway inflammation and hyperresponsiveness in mice. In this process, NS1-stimulated TSLP and OX40L play a major role by inhibiting the induction of Tregs, which is at least partially mediated by modulating AKT-mTOR signaling pathways.
Copyright © 2021 Elsevier Ltd. All rights reserved.