Advertisement

 

 

Schistosoma mansoni SmKI-1 serine protease inhibitor binds to elastase and impairs neutrophil function and inflammation.

Schistosoma mansoni SmKI-1 serine protease inhibitor binds to elastase and impairs neutrophil function and inflammation.
Author Information (click to view)

Morais SB, Figueiredo BC, Assis NRG, Alvarenga DM, de Magalhães MTQ, Ferreira RS, Vieira AT, Menezes GB, Oliveira SC,


Morais SB, Figueiredo BC, Assis NRG, Alvarenga DM, de Magalhães MTQ, Ferreira RS, Vieira AT, Menezes GB, Oliveira SC, (click to view)

Morais SB, Figueiredo BC, Assis NRG, Alvarenga DM, de Magalhães MTQ, Ferreira RS, Vieira AT, Menezes GB, Oliveira SC,

Advertisement

PLoS pathogens 2018 02 0914(2) e1006870 doi 10.1371/journal.ppat.1006870
Abstract

Protease inhibitors have important function during homeostasis, inflammation and tissue injury. In this study, we described the role of Schistosoma mansoni SmKI-1 serine protease inhibitor in parasite development and as a molecule capable of regulating different models of inflammatory diseases. First, we determine that recombinant (r) SmKI-1 and its Kunitz domain but not the C-terminal region possess inhibitory activity against trypsin and neutrophil elastase (NE). To better understand the molecular basis of NE inhibition by SmKI-1, molecular docking studies were also conducted. Docking results suggest a complete blockage of NE active site by SmKI-1 Kunitz domain. Additionally, rSmKI-1 markedly inhibited the capacity of NE to kill schistosomes. In order to further investigate the role of SmKI-1 in the parasite, we designed specific siRNA to knockdown SmKI-1 in S. mansoni. SmKI-1 gene suppression in larval stage of S. mansoni robustly impact in parasite development in vitro and in vivo. To determine the ability of SmKI-1 to interfere with neutrophil migration and function, we tested SmKI-1 anti-inflammatory potential in different murine models of inflammatory diseases. Treatment with SmKI-1 rescued acetaminophen (APAP)-mediated liver damage, with a significant reduction in both neutrophil recruitment and elastase activity. In the model of gout arthritis, this protein reduced neutrophil accumulation, IL-1β secretion, hypernociception, and overall pathological score. Finally, we demonstrated the ability of SmKI-1 to inhibit early events that trigger neutrophil recruitment in pleural cavities of mice in response to carrageenan. In conclusion, SmKI-1 is a key protein in S. mansoni survival and it has the ability to inhibit neutrophil function as a promising therapeutic molecule against inflammatory diseases.

Submit a Comment

Your email address will not be published. Required fields are marked *

eighteen + 19 =

[ HIDE/SHOW ]