Advertisement

 

 

Seeing the forest beyond the trees: Predicting survival in burn patients with machine learning.

Seeing the forest beyond the trees: Predicting survival in burn patients with machine learning.
Author Information (click to view)

Cobb AN, Daungjaiboon W, Brownlee SA, Baldea AJ, Sanford AP, Mosier MM, Kuo PC,


Cobb AN, Daungjaiboon W, Brownlee SA, Baldea AJ, Sanford AP, Mosier MM, Kuo PC, (click to view)

Cobb AN, Daungjaiboon W, Brownlee SA, Baldea AJ, Sanford AP, Mosier MM, Kuo PC,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

American journal of surgery 2017 11 07() pii S0002-9610(17)30986-8
Abstract
BACKGROUND
This study aims to identify predictors of survival for burn patients at the patient and hospital level using machine learning techniques.

METHODS
The HCUP SID for California, Florida and New York were used to identify patients admitted with a burn diagnosis and merged with hospital data from the AHA Annual Survey. Random forest and stochastic gradient boosting (SGB) were used to identify predictors of survival at the patient and hospital level from the top performing model.

RESULTS
We analyzed 31,350 patients from 670 hospitals. SGB (AUC 0.93) and random forest (AUC 0.82) best identified patient factors such as age and absence of renal failure (p < 0.001) and hospital factors such as full time residents (p < 0.001) and nurses (p = 0.004) to be associated with increased survival. CONCLUSIONS
Patient and hospital factors are predictive of survival in burn patients. It is difficult to control patient factors, but hospital factors can inform decisions about where burn patients should be treated.

Submit a Comment

Your email address will not be published. Required fields are marked *

three × 2 =

[ HIDE/SHOW ]