Not all pregnant women seem to select the more curved lumbopelvic posture that their sexual dimorphic anatomy allows even though many previous researchers have assumed lumbopelvic curvature to be standard during pregnancy. This study is vital to understanding coevolution of lumbopelvic sexual dimorphism and bipedalism, and understanding some clinical implications of intervening in gestational posture changes.
Are there anthropometric changes that correspond with selection of lumbopelvic curvature change during pregnancy? What are the biomechanical costs and benefits of gestational lumbopelvic curvature change?
Twenty pregnant women were tested at five different times in the 2nd and 3rd trimesters of pregnancy. Lumbopelvic posture, standing kinetics and gait kinetics were measured longitudinally. Additionally, we modeled the effects on standing and gait without lumbopelvic postural changes, but with anthropometric changes, for each individual.
We found greater lumbopelvic angulation to correspond with a shorter body height (6 cm difference between groups, p = 0.048) and deeper 2nd trimester abdomen (2 cm difference between groups, p = 0.013). Lumbopelvic angulation lowers support requirements (in standing and walking (6% lower support impulse, p = 0.056), but at the cost of shifting the propulsive actions to a less efficient pulling action rather than pushoff (13 % reduction in pushoff time, p = 0.001). We observed minimal effects on walking kinematics and balance control.
Our findings suggest the evolutionary advantage of the female lumbopelvic unit is the adaptability it provides to adjust for the individual needs of the pregnant woman. We discuss multiple potential contributing factors that may have shaped hominin female lumbopelvic evolution and are involved in self-selecting lumbopelvic posture.

Copyright © 2021 Elsevier B.V. All rights reserved.

Author