Studies published earlier this year demonstrated the association of the solute carrier gene with the risk and severity of COVID-19. The protein product (Sodium-dependent Imino Transporter 1 (SIT1)) is involved in the transport of amino acids, including glycine. Here we summarized the results of recent studies demonstrating the interaction of SIT1 with the ACE2 receptor for SARS-CoV-2 as well as an observed association of with the risk and traits of Type 2 diabetes (T2D). Recently, it was also proposed that represents the novel regulator of glycine levels and that glycine has beneficial effects against the proinflammatory cytokine secretion induced by SARS-CoV-2 infection. Ivermectin, as a partial agonist of glycine-gated chloride channels, was also recently suggested to interfere with the COVID-19 cytokine storm by inducing the activation of glycine receptors. Furthermore, plasma glycine levels are found to be decreased in diabetic patients. Thus, further clinical trials are warranted to confirm the potential favorable effects of targeting the SIT1 transporter and glycine levels in the treatment of COVID-19, particularly for the severe case of disease associated with hyperglycemia, inflammation, and T2D. These findings suggest that SIT1 may potentially represent one of the missing pieces in the complex puzzle observed between these two pandemic diseases and the potential novel target for their efficient treatment.
© 2021 Sabina Semiz, published by De Gruyter.