Advertisement

 

 

Splicing and transcription touch base: co-transcriptional spliceosome assembly and function.

Splicing and transcription touch base: co-transcriptional spliceosome assembly and function.
Author Information (click to view)

Herzel L, Ottoz DSM, Alpert T, Neugebauer KM,


Herzel L, Ottoz DSM, Alpert T, Neugebauer KM, (click to view)

Herzel L, Ottoz DSM, Alpert T, Neugebauer KM,

Advertisement

Nature reviews. Molecular cell biology 2017 08 09() doi 10.1038/nrm.2017.63

Abstract

Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing.

Submit a Comment

Your email address will not be published. Required fields are marked *

18 − 6 =

[ HIDE/SHOW ]