Cellular senescence, triggered by sublethal damage, is characterized by indefinite growth arrest, altered gene expression patterns, and a senescence-associated secretory phenotype. While the accumulation of senescent cells during aging decreases tissue function and promotes many age-related diseases, at present there is no universal marker to detect senescent cells in tissues. Cyclin-dependent kinase inhibitors 2A (p16/CDKN2A) and 1A (p21/CDKN1A) can identify senescent cells, but few studies have examined the numbers of cells expressing these markers in different organs as a function of age. Here, we investigated systematically p16- and p21-positive cells in tissue arrays designed to include normal organs from persons across a broad spectrum of ages. Increased numbers of p21-positive and p16-positive cells with donor age were found in skin (epidermis), pancreas, and kidney, while p16-expressing cells increased in brain cortex, liver, spleen and intestine (colon), and p21-expressing cells increased in skin (dermis). The numbers of cells expressing p16 or p21 in lung did not change with age, and muscle did not appear to have p21- or p16-positive cells. In summary, different organs display different levels of the senescent proteins p16 and p21 as a function of age across the human life span.
Related Posts
Advertisement
Meeting Coverage
- ACC 2020The American College of Cardiology decided to cancel ACC.20/WCC due to COVID-19, which was scheduled to take place March 28-30 in Chicago. However, ACC.20/WCC Virtual Meeting continues to release cutting edge science and practice changing updates for cardiovascular professionals on demand and free through June 2020.
- ENDO: 2020ENDO 2020 Annual Conference has been canceled due to COVID-19. Here are highlights of emerging data that has still been released. Keep an eye out for ENDO Online 2020, which will take place from June 8 to 22.