Patients with FLT3-ITD mutated (FLT3-ITD+) Acute Myeloid Leukemia (AML), have frequently relapsed or refractory disease and FLT3-ITD+ inhibitors have limited efficacy. Rho kinases (ROCK) are constitutively activated by FLT3-ITD+ in AML via PI3 kinase and Rho GTPase. Upon activation by ROCK, LIM kinases (LIMK) inactivate cofilin by phosphorylation which affects cytoskeleton dynamics, cell growth and apoptosis. LIMK inhibition leads to cofilin activation via dephosphorylation and activated cofilin localizes to mitochondria inducing apoptosis. Thus, we investigated the therapeutic potential of the LIMK1/2 inhibitor CEL_Amide (LIMKi) in FLT3-ITD+ AML. Expression of LIMK1/2 in FLT3-ITD+ cell lines MOLM-13 and MV-4-11 cells could be detected by RT-qPCR and at the protein level. IC50 after LIMKi monotherapy was 440 nM in MOLM-13 cells and 420 nM in MV4-11 cells. Treatment with LIMKi decreased LIMK1 protein levels and repression of inactivating phosphorylation of cofilin in FLT3-ITD+ cells. Combination experiments with LIMKi and FLT3 inhibitors including midostaurin, crenolanib and gilteritinib were synergistic for treatment of MOLM-13 cells while combinations with quizartinib were additive. Combinations of LIMKi and the hypomethylating agent azacitidine or the ROCK inhibitor fasudil were additive. In NOD-SCID mice engrafted with MOLM13-LUC cells, the FLT3 inhibitor midostaurin and LIMKi delayed MOLM13-LUC engraftment as detected by in vivo bioluminescence imaging and the LIMKi and midostaurin combination prolonged significantly survival of leukemic mice. LIMK1/2 inhibition by the small molecule CEL_Amide seems to have promising activity in combination with FLT3 inhibitors in vitro as well as in vivo and may constitute a novel treatment strategy for FLT3-ITD+ AML.Copyright © 2020 Elsevier Ltd. All rights reserved.

Author