The H9N2 subtype avian influenza virus (AIV) is one of the most prevalent AIV subtypes that can be found throughout most countries. Currently, due to the neglect of low pathogenic avian influenza virus (LPAIV) and monotonous control technique, an expanding H9N2 virus epizootic have been arisen and causes great economic losses in the poultry industry. Therefore, novel anti-influenza drugs are necessary for the prevention and control of H9N2 AIV. Our previous studies have found that Taishan Pinus massoniana pollen polysaccharides (TPPPS) have antiviral effects, but whether they can inhibit the H9N2 AIV remains unclear. Here, we further investigated the effects of TPPPS on the H9N2 virus and its underlying mechanisms of action. We found that TPPPS significantly inhibited the replication of the H9N2 virus in a dose-dependent manner, especially during the period of virus adsorption in vitro. Transmission electron microscopy demonstrated that TPPPS reduce infection by interfering with virus entry into host cells rather than by interacting with the H9N2 virus particles. A fluorescence quantitative PCR (qPCR) assay and an animal experiment were performed to evaluate the anti-viral effect of TPPPS in vivo. As expected, the lungs of chickens treated with TPPPS had fewer lesions and lower virus contents compared with the PBS group. In addition, pre-treatment with TPPPS clearly enhanced host disease resistance and delayed infection by the H9N2 virus. Taken together, our results reveal that TPPPS suppress H9N2 virus replication both in vitro and in vivo and therefore shows promising as an anti-AIV agent.
Copyright © 2020 Elsevier B.V. All rights reserved.