Advertisement

 

 

Terminal spreading depolarization and electric silence in death of human cortex.

Terminal spreading depolarization and electric silence in death of human cortex.
Author Information (click to view)

Dreier JP, Major S, Foreman B, Winkler MKL, Kang EJ, Milakara D, Lemale CL, DiNapoli V, Hinzman JM, Woitzik J, Andaluz N, Carlson A, Hartings JA,


Dreier JP, Major S, Foreman B, Winkler MKL, Kang EJ, Milakara D, Lemale CL, DiNapoli V, Hinzman JM, Woitzik J, Andaluz N, Carlson A, Hartings JA, (click to view)

Dreier JP, Major S, Foreman B, Winkler MKL, Kang EJ, Milakara D, Lemale CL, DiNapoli V, Hinzman JM, Woitzik J, Andaluz N, Carlson A, Hartings JA,

Advertisement

Annals of neurology 2018 01 13() doi 10.1002/ana.25147
Abstract
OBJECTIVE
Restoring the circulation is the primary goal in emergency treatment of cerebral ischemia. However, better understanding of how the brain responds to energy depletion could inform the time available for resuscitation until irreversible damage and advance development of interventions that prolong this span. Experimentally, injury to central neurons begins only with anoxic depolarization. This potentially reversible, spreading wave typically starts 2-5 min after the onset of severe ischemia, marking the onset of a toxic intraneuronal change that eventually results in irreversible injury.

METHODS
To investigate this in the human brain, we performed recordings with either subdural electrode strips (n=4) or intraparenchymal electrode arrays (n=5) in patients with devastating brain injury that resulted in activation of a Do Not Resuscitate-Comfort Care order followed by terminal extubation.

RESULTS
Withdrawal of life-sustaining therapies produced a decline in brain tissue partial pressure of oxygen (pti O2 ) and circulatory arrest. Silencing of spontaneous electrical activity developed simultaneously across regional electrode arrays in eight patients. This silencing, termed ‘nonspreading depression’, developed during the steep falling phase of pti O2 (intraparenchymal sensor, n=6) at 11 (7, 14) mmHg. Terminal spreading depolarizations started to propagate between electrodes 3.9 (2.6, 6.3) min after onset of the final drop in perfusion and 13 to 266s after nonspreading depression. In one patient, terminal spreading depolarization induced the initial electrocerebral silence in a spreading depression pattern; circulatory arrest developed thereafter.

INTERPRETATION
These results provide fundamental insight into the neurobiology of dying and have important implications for survivable cerebral ischemic insults. This article is protected by copyright. All rights reserved.

Submit a Comment

Your email address will not be published. Required fields are marked *

twelve − 7 =

[ HIDE/SHOW ]