Colorectal cancer (CRC) is the third most common solid tumor worldwide and has shown resistance to several immunotherapies, particularly immune checkpoint blockade therapy, which is effective in many other types of cancer. Our previous studies indicated that the active fraction of Garcinia yunnanensis (YTE-17), had potent anticancer activities by regulating multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of CRC is limited. This study tested the effects of YTE-17 on colon cancer development in vivo by using two murine models: the carcigenic azoxymethane/dextran sulfate sodium (AOM/DSS)-induced CRC model and a genetically induced model using Apc mice. Here, the tumor load, tumor number, histology, and even some oncogenes were used to evaluate the effect of YTE-17. The intragastric administration of YTE-17 for 12 weeks significantly decreased CRC incidence, tumor number and size, immunity, and some tumor-associated macrophage (TAM) markers, including CD206, Arg-1, IL-10, and TGF-β. Importantly, the macrophages depletion by clodronate (CEL) also played a role in reducing the tumor burden and inhibiting tumor development, which were not affected by YTE-17 in the Apc mice. Moreover, the YTE-17 treatment attenuated CRC cell growth in a co-culture system in the presence of macrophages. Consistently, YTE-17 effectively reduced the tumor burden and macrophage infiltration and enhanced immunity in the AOM/DSS and Apc colon tumor models. Altogether, we demonstrate that macrophages in the microenvironment may contribute to the development and progression of CRC cells and propose YTE-17 as a new potential drug option for the treatment of CRC.
© 2020 Federation of American Societies for Experimental Biology.