Advertisement

 

 

The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme.

The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme.
Author Information (click to view)

Sharma S, Patnaik SK, Taggart RT, Baysal BE,


Sharma S, Patnaik SK, Taggart RT, Baysal BE, (click to view)

Sharma S, Patnaik SK, Taggart RT, Baysal BE,

Advertisement
Share on FacebookTweet about this on TwitterShare on LinkedIn

Scientific reports 2016 12 156() 39100 doi 10.1038/srep39100

Abstract

APOBEC3G is a cytidine deaminase with two homologous domains and restricts retroelements and HIV-1. APOBEC3G deaminates single-stranded DNAs via its C-terminal domain, whereas the N-terminal domain is considered non-catalytic. Although APOBEC3G is known to bind RNAs, APOBEC3G-mediated RNA editing has not been observed. We recently discovered RNA editing by the single-domain enzyme APOBEC3A in innate immune cells. To determine if APOBEC3G is capable of RNA editing, we transiently expressed APOBEC3G in the HEK293T cell line and performed transcriptome-wide RNA sequencing. We show that APOBEC3G causes site-specific C-to-U editing of mRNAs from over 600 genes. The edited cytidines are often flanked by inverted repeats, but are largely distinct from those deaminated by APOBEC3A. We verified protein-recoding RNA editing of selected genes including several that are known to be involved in HIV-1 infectivity. APOBEC3G co-purifies with highly edited mRNA substrates. We find that conserved catalytic residues in both cytidine deaminase domains are required for RNA editing. Our findings demonstrate the novel RNA editing function of APOBEC3G and suggest a role for the N-terminal domain in RNA editing.

Submit a Comment

Your email address will not be published. Required fields are marked *

9 − 6 =

[ HIDE/SHOW ]