Apoptosis is a form of programmed cell death which is essential for the Growth of dividing human cells whereas, in contrast, it is deleterious for post-mitotic cells such as neurons. Bax and α-synuclein are two human proteins which play a role in the induction of neuronal apoptosis in neurodegenerative diseases like Alzheimer’s and Parkinson’s. Human Bax and α-synuclein also induce cell death when expressed in baker’s yeast, Saccharomyces cerevisiae. Quite unexpectedly, the human α-synuclein gene had been identified as an inhibitor of pro-apoptotic Bax using a yeast-based screen of a human hippocampal cDNA library. Plasmids were constructed with different promoters, which allow expression of wild-type and Parkinson’s disease-related mutant α-synuclein genes, from (i) multi-copy 2µ (episomal) plasmids and (ii) integrative plasmids that compel expression of genes from chromosomal sites in varying copy numbers (1 to 3). All α-synuclein-containing plasmids were introduced, through transformation, into a yeast strain which already contained a chromosomally integrated copy of Bax. It is for the first time that it was observed that, depending on gene dosage, only wild-type α-synuclein is anti-apoptotic while mutant α-synuclein is not. The results also indicate that wild-type α-synuclein has a remarkable ability to manifest two contrasting effects depending on its level of expression: (i) normally, it would negate apoptosis but (ii) when overexpressed, it tends to induce apoptosis which is probably what happens in Parkinson’s disease.
Copyright 2020 The Author(s).

Author